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Zusammenfassung: Die Regulation der Nahrungsaufnahmelafit sich als Regelkreis
mit negativem Feedback darstellen. Hunger und/oder Appetit veranlassen Mensch
oder Tier, Nahrung aufzunehmen. Durch die aufgenommene Nahrung werden pra-
oder postabsorptive Mechanismen aktiviert, die zu Sittigung fiihren. Praabsorptivist
dabeivor allem die Stimulierung oraler und gastrointestinaler Chemo- und Mechano-
rezeptoren von Bedeutung. Auch dem Gastrointestinalhormon Cholecystokinin
scheint eine physiologische Sattigungsfunktion zuzukommen. Priaabsorptive Satti-
gungsmechanismen werden ferner durch die Geschwindigkeit der gastrointestinalen
Passage der Digesta beeinfluBt. Das pankreatische Inselzellhormon Glucagon,
welches im Verlauf der Nahrungsaufnahme vermehrt sezerniert wird, sowie unter-
schiedliche Metaboliten iragen zur postabsorptiven Regulation der Nahrungsauf-
nahme bei, indem sie hepatische Chemorezeptoren aktivieren, die vorwiegend iiber
vagale Afferenzen mit dem Gehirn verbunden sind. An der Regulation der Nah-
Tungsaufnahme sind ferner Glucoserezeptoren im Gehirn beteiligt, die Veranderun-
gen der Blutglucosekonzentration bzw. der Glucose-Utilisation registrieren. Die
Glucoserezeptoren im Nucleus tractus solitarii der Medulla oblongata sind diesbe-
zliglich offenbar von besonderer Bedeutung. Vom Nucleus tractus solitarii, in dem
die Afferenzen von Gastrointestinaltrakt und Leber sowie auch Geschmacksafferen-
Zzen umgeschaltet werden, projizieren Nervenfasern zum Hypothalamus und zu
anderen Vorderhirnarealen. In diesem neuronalen Netzwerk werden die aus der
Peripherie eintreffenden Informationen durch unterschiedliche Neurotransmitter
und -peptide integriert. Das Zusammenwirken und die genaue Funktion der daran
beteiligten Substanzen sind allerdings noch nicht vollstandig geklart. Das Kérperge-
wicht bzw. die Fettdepots des Organismus beeinflussen die Nahrungsaufnahme
vermutlich tGiber die Modulation eines postabsorptiven Mechanismus.

Summary: Regulation of food intake is commonly treated as a negative feedback-
loop. Hunger and/or appetite lead man and animals to ingest food. The subsequent
meal-contingent activation of pre- and postabsorptive mechanisms then leads to
§atiety. The activation of oral and gastrointestinal chemo- and mechanoreceptors is
Important on the preabsorptive site. The gastrointestinal hormone cholecystokinin
Mmay also have a physiological satiety effect. Preabsorptive satiety mechanisms are
Influenced by the rate of gastrointestinal transit. The pancreatic hormone glucagon,
which is released during meal taking, and various metabolites contribute to the
bostabsorptive regulation of food intake through activation of hepatic chemorecep-
tPPS, which are connected to the brain via predominantly vagal afferents. In addi-
tion, glucoreceptors in the brain, in particular in the nucleus of the solitary tract,
contribute to food intake regulation by monitoring blood glucose concentration or,
More specifically, glucose utilization. The nucleus of the solitary tract, which relays

969



80 Zeitschrift fiir Erndhrungswissenschaft, Band 29, Heft 2 (1990)

vagal afferents from gut and liver and also gustatory afferents, projects to the
hypothalamus and to other forebrain structures. In this neural network the informa-
tions from the periphery are integrated by various neurotransmitters and neuropep-
tides, but the exact role of the substances involved is not fully understood yet. Body
weight and, hence, body fat presumably affects feeding through modulation of a
postabsorptive mechanism.

Schliisselwdrter: Hunger, Sattigung, Nahrungsaufnahme

Key words: hunger, satiety, food intake

Einleitung

Mensch und Tier befinden sich im Energiegleichgewicht, wenn Nah-
rungsaufnahme (= Energieaufnahme) und Energieverbrauch bzw. Ener-
gieabgabe im Mittel gleich sind. Trotz zum Teil erheblicher Fluktuationen
von Nahrungsaufnahme und Energieverbrauch bleibt bei gesunden
erwachsenen Individuen unterschiedlicher Spezies das Kérpergewicht
und damit der verlalllichste Indikator fiir die Energiebilanz lingerfristig
erstaunlich konstant. Dies zeigt, dall die Energiebilanz sehr gut reguliert
wird. Im Gegensatz zum Tier kann der Mensch die Energiebilanz tiber
eine Steigerung des Energieverbrauchs oder iiber eine Einschrinkung der
Energieaufnahme willentlich beeinflussen. Zusatzlich wird die Energiebi-
lanz jedoch auch beim Menschen wie beim Tier durch einen physiologi-
schen Mechanismus unbewuBt reguliert. Mehreren Untersuchungen
zufolge werden bei normalgewichtigen Erwachsenen nur etwa 20 % von
zuviel aufgenommener Energie (Bruttoenergie der Nahrung oder umsetz-
bare Energie) in Form von Warme abgegeben (60, 131, 134). Somit wird die
Energiebilanz offenbar vorwiegend iiber Verinderungen der Nahrungs-
aufnahme reguliert. Diese erfolgt bei Mensch und Tier bekanntlich in
Form von Mahlzeiten. Verinderungen der Nahrungsaufnahme manifestie-
ren sich demzufolge in Verdnderungen der Gréfie und/oder der Haufigkeit
einzelner Mahlzeiten. Die physiologischen Vorginge, welche die Gréfe
und Héufigkeit von Mahlzeiten determinieren, sind bei allen héher ent-
wickelten Spezies sehr dhnlich und lassen sich als Regelkreis mit negati-
vem Feedback darstellen (Abb. 1). Hunger (= Nahrungsaufnahmetrieb)
und/oder Appetit (= Verlangen nach bestimmter Nahrung) veranlassen
Mensch und Tier, Nahrung aufzunehmen. Durch die aufgenommene Nah-
rung werden pré- und postabsorptive Mechanismen aktiviert, die zu Satti-
gung flihren. Im Verlauf der Passage der Nahrung durch den Verdauungs-
trakt werden orale und gastrointestinale Chemo- und Mechanorezeptoren
stimuliert. Die Aktivierung der betreffenden Rezeptoren erfolgt gréfBten-
teils bereits wihrend der Mahlzeit. Praabsorptive Mechanismen sind des-
halb von besonderer Bedeutung fiir die Beendigung der Mahlzeit und
damit fiir die Regulation der MahlzeitengréBe. Im Rahmen der postab-
sorptiven Mechanismen kénnen Hormone oder absorbierte Néhrstoffe
entweder unmittelbar Signalfunktion fiir das Gehirn besitzen oder tiber
Chemorezeptoren der Leber wirken, die mit dem Gehirn tiber afferente
Nerven verbunden sind. Das Zusammenwirken der pri- und postabsorpti-
ven Mechanismen flhrt dazu, daf Hunger im Verlauf einer Mahlzeit in
Siattigung iibergeht und daf} die Sittigung nach Beendigung der Mahlzeit
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Abb. 1. Diagramm zur Regulation der Nahrungsaufnahme.

fiir einige Zeit bestehenbleibt. Ein Nachlassen der Aktivierung der betref-
fenden Mechanismen fihrt schlieflich frither oder spiter wieder zu Hun-
ger. Im folgenden soll der heutige Kenntnisstand beztiglich der wichtig-
sten pra- und postabsorptiven Mechanismen der Verzehrsregulation kurz
dargestellt werden.

Praabsorptive Mechanismen
Regulation der Nahrungsaufnahme durch den Geschmack

Der Geschmack der Nahrung erlaubt die Beurteilung derselben, noch
bevor nennenswerte Mengen davon verzehrt sind. Er spielt somit insbe-
sondere bei der Nahrungswahl eine wichtige Rolle. Die Akzeptanz eines
bestimmten Geschmacks wird dabei durch angeborene wie auch erlernte
Priferenzen und Aversionen gesteuert. Beispielsweise zeigen die meisten
Spezies einschlieBlich der landwirtschaftlichen Nutztiere eine Praferenz
fir SiuBes (6, 14, 117). Bitterer Geschmack wird hingegen im allgemeinen
abgelehnt (62). Dabei diirfte es sich um eine angeborene Priferenz (siif3)
bzw. Aversion (bitter) handeln, da Neugeborene bereits vor der ersten
Milchaufnahme auf Stif3es positiv und auf Bitteres negativ reagieren (124).
Angeborene Priferenzen oder Aversionen gegenuber bestimmten
Geschmacksstimuli sind jedoch nicht unveranderbar. Mensch und Tier
koénnen Ubelkeit oder Stérungen des Wohlbefindens, die durch Nah-
rungsnoxen oder sonstige Faktoren (Krankheit, Stref3 etc.) bedingt sind,
mit dem Geschmack der Nahrung assoziieren (8, 10, 32, 102). Nahrung mit
dem betreffenden Geschmack wird anschlief3end gemieden. Man spricht
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in diesem Fall von einer erlernten Geschmacksaversion. Ein Beispiel
dafiir ist die bei Verfuitterung von Mangeldiiaten hiufig auftretende Ver-
zehrsdepression (siehe 32, 63). Eine sehr subtile Verinderung der
Schmackhaftigkeit ist wahrend der Nahrungsaufnahme zu beobachten.
So nimmt die Schmackhaftigkeit von Speisen im Verlauf einer Mahlzeit
generell ab (28, 110). Als unmittelbare Folge davon wird die Nahrungsauf-
nahme gehemmt (110). Da der Effekt spezifisch fur den Geschmack der
aufgenommenen Nahrung ist, spricht man in diesem Zusammenhang
auch von geschmacksspezifischer Sattigung (110). Nahrung mit anderem
Geschmack wird demgegeniiber meist noch bereitwillig verzehrt (110).
Die Nahrungsaufnahme wird dann vor allem durch den Appetit gesteuert.
Dementsprechend nimmt die MahlzeitengroRe bei Mensch und Ratte
erheblich zu, wenn im Verlauf einer Mahlzeit mehrere unterschiedliche
Speisen angeboten werden (110). Dieser sogenannte Dessert-Effekt ist
nicht auf einzelne Mahlzeiten beschriankt. Ratten werden niamlich unwei-
gerlich fett, wenn ihnen anstelle einer normalen Labordiit kontinuierlich
verschiedene schmackhafte Nahrungsmittel zur Auswahl angeboten wer-
den (118). Die Vermutung liegt nahe, daf3 dhnliche Faktoren auch bei

manchen Formen der Obesitas des Menschen ursichlich beteiligt sein
koénnten.

Gastrointestinaltrakt und Regulation der Nahrungsaufnahme

Der Magen spielt fiir das Zustandekommen der Sittigung eine wichtige
Rolle. Wiederholt wurde gezeigt, daf intragastrale Infusionen von Nihr-
stoffen die Nahrungsaufnahme, speziell die Mahlzeitengré e, reduzieren
(19, 20, 33). Dieser Effekt trat auch dann auf, wenn der Ubertritt der
Nahrung vom Magen in den Diinndarm durch eine mit Wasser gefiillte
Manschette um den Pylorus verhindert wurde (22). Die Drainage von
Nahrung aus dem Magen wihrend einer Mahlzeit fithrte hingegen zu einer
kompensatorischen Zunahme der MahlzeitengréBe (20, 22). Die Anwesen-
heit von Nahrung im Magen wirkt dabei vermutlich auf unterschiedliche
Weise sattigend (Abb. 2).

Magendehnung: Durch die Dehnung des Magens werden gastrale Deh-
nungsrezeptoren stimuliert (99), von denen die Information offenbar tiber
afferente Fasern des Vagus zum Gehirn gelangt (44). Das Fassungsvermdo-
gen des Magens scheint insbesondere dann fiir den Verzehr limitierend zu
sein, wenn ein grofles Volumen von Nahrung mit geringer energetischer
Dichte aufgenommen wird (19). Der Filllungszustand des Magens spielt
dementsprechend fiir das Zustandekommen der Sattigung beim Neuge-
borenen eine besondere Rolle (49).

Nahrstoffprisenz: Nach einer Hypothese von Deutsch et al. soll neben
der Magendehnung der Niahrstoffgehalt von gastralen Chemorezeptoren
registriert werden, von denen die Information iiber den Nervus splanchni-
cus zum Gehirn gelangt (19, 20, 21). Die Bedeutung gastraler Chemorezep-
toren fiir die Regulation der Nahrungsaufnahme wurde kirzlich jedoch in
Frage gestellt (5). Mehreren Befunden (55, 106, 128) zufolge sind aufler
gastralen Mechano- und Chemorezeptoren auch verschiedene intestinale
Chemorezeptoren, die auf Glucose, Aminosauren und Fettsduren anspre-
chen (85), sowie intestinale Osmorezeptaren (57) am Zustandekommen der
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Abb. 2. Gastrointestinaltrakt und Sittigung.

Sattigung beteiligl. Die intestinalen Chemorezeptoren, welche die Anwe-
senheit von Nahrstoffen im Darmlumen registrieren, sind vermutlich tiber
vagale Afferenzen mit dem Gehirn verbunden (85, 106).
Gastrointestinalhormone: Ob auch Gastrointestinalhormone eine phy-
siologische Sattigungsfunktion besitzen, wird seit mehr als 15 Jahren
kontrovers diskutiert. Eine Reihe von Peptiden des Gastrointestinaltrak-
ies reduziert nach parenieraler Applikation bei Mensch und Tier die
Nahrungsaufnahme, insbesondere die Mahlzeitengrofie (41, 42, 88). Das
diesbeziiglich bekannteste Gastrointestinalhormaon ist ohne Zweifel Cho-
lecystokinin (CCK). Der verzehrsreduzierende Effekt von exogenem CCK
148t sich durch subdiaphragmatische Vagotomie oder durch das Neuroto-
xin Capsaicin, welches selektiv marklose afferente Neurone zerstért, auf-
heben (107, 122). Dies spricht fiir einen peripheren Sittigungseffekt von
CCK, zumal CCK die Blut-Hirn-Schranke nur schlecht passieren kann
(97). Neuere Befunde sprechen daflr, dafl CCK die Nahrungsaufnahme
tber einen lokalen, parakrinen Effekt hemmt (45), moglicherweise iiber
CCK-Rezeptoren am Pylorus (87). Ob dabei, wie urspriinglich vermutet
(86), eine Hemmung der Magenentleerung zum verzehrsreduzierenden
Effekt von CCK beitrigt, ist ungewif (80). Ein physiologischer Sattigungs-
effekt von endogenem CCK erscheint allerdings méglich, nachdem kiirz-
lich gezeigt wurde, dal3 sehr spezifische CCK-Rezeptor-Antagonisten nach
parenteraler Applikation bei Maus (120), Ratte (24, 56) und Schwein (26)
den Verzehr zumindest unter bestimmten Bedingungen stimulieren. Ein
schliissiger Beweis dafir, dafi eines der anderen in der Magen- oder
Darmwand gebildeten Peptide unter physiologischen Bedingungen am
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Zustandekommen der Séttigung beteiligt ist, steht hingegen noch aus.
Nachdem viele Gastrointestinalhormone eine duale Funktion als Gastro-
intestinalhormon und als Neurotransmitter besitzen (88), besteht aller-
dings die Moglichkeit, dafl manche von ihnen im Verlauf der Nahrungs-
aufnahme auch an Synapsen im ZNS ausgeschiittet werden und dort
sattigend wirken. Dazu pafit, daBl einige Gastrointestinalhormone nach
Applikation in die Hirnventrikel oder in bestimmte Hirnareale einen
besonders stark ausgepriagten Sittigungseffekt besitzen (41, 88). Zudem
wurde kiirzlich gezeigt, daf$} ein selektiver Antagonist der zentralnervésen
CCK-Rezeptoren nach subkutaner Injektion bei der Ratte die Futterauf-
nahme etwa 100mal stérker stimulierte als ein selektiver Antagonist der
peripheren CCK-Rezeptoren (24).

Gastrointestinale Passage von Digesta: Nachdem die Anwesenheit von
Nihrstoffen im Magen oder Darm Sittigung induziert, liegt die Vermu-
tung nahe, daf} die Verweildauer von Nahrung im Gastrointestinaltrakt
fur die Sattigungsdauer von Bedeutung ist (113). Die Verweildauer von
Nihrstoffen im Verdauungstrakt wird durch die Magenentleerung, durch
die Verdauung und durch die Absorption determiniert. Die Magenentlee-
rungsgeschwindigkeit ist dabei abhingig von der Beschaffenheit der Nah-
rung (77) und wird vorwiegend Uber vom Diinndarm ausgehende nervale
und humorale Feedback-Signale gesteuert (siehe 72). Tats#ichlich sind
Nahrungsaufnahme und Geschwindigkeit der gastrointestinalen Passage
von Digesta haufig positiv miteinander korreliert (25, 46, 113). Eine experi-
mentell induzierte Verzogerung der Magenentleerung geht dementspre-
chend oft mit einer Verzehrsdepression einher (23, 113).

Besonderheiten beim Wiederkiduer: Analog zu den praabsorptiven Satti-
gungsmechanismen des Monogastriers tragt beim Wiederkiuer vermut-
lich die Reizung von retikuloruminalen Mechanorezeptoren zur Sattisung
bei (siehe 64). Die Dehnung der Vormagenwand scheint vor allem bei
rohfaserreicher Fiitterung fiir die Futteraufnahme limitierend zu sein (7).
Ferner wurde vermutet, dafl der mit der Futteraufnahme einhergehende
Anstieg der Konzentration von fliichtigen Fettsiuren im Pansen lber
ruminale Chemorezeptoren Sattigung induzieren kénnte (4). Von den drei
fliichtigen Fettsiuren Acetat, Propionat und Butyrat, die bei der Pansen-
fermentation entstehen, reduzierte vor allem Acetat die Futteraufnahme
nach intraruminaler Infusion (4). Der verzehrsreduzierende Effekt von
Acetat scheint dabei durch Chemorezeptoren im dorsalen Pansensack
vermittelt zu werden (4), deren Afferenzen im Vagus verlaufen dirften
{80). Die physiologische Bedeutung der erwéhnten Befunde ist allerdings
zweifelhaft, weil anzunehmen ist, daf3 die relativ hohe Infusionsrate in den
betreffenden Experimenten voriibergehend zu unphysiologisch hohen

Acetatkonzentrationen und zu einer Stimulierung von Osmorezeptoren
fixthrte (17).

Pastabsorptive Mechanismen
Metabolische Regulation der Nahrungsaufnahme

Da die parenterale Applikation unterschiedlicher, energieliefernder
Nihrstoffe bei verschiedenen Spezies einen Rickgang der Nahrungsauf-
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nahme bewirkt (57, 65, 82, 92, 96, 111, 127), sind neben den bisher bespro-
chenen praabsorptiven auch postabsorptive, metabolische Mechanismen
flir die Regulation der Nahrungsaufnahme von Bedeutung. Ursprunglich
konzentrierte sich das Interesse in diesem Zusammenhang vor allem auf
Glucose, die wegen ihrer privilegierten Rolle im Stoffwechsel fiir eine
Signalfunktion pradestiniert erscheint. Anfang der 50er Jahre postulierte
Mayer, daf3 Fluktuationen der Glucose-Utilisationsrate von sogenannten
Glucoserezeptoren vor allem im Gehirn registriert werden und damit die
Nahrungsaufnahme beeinflussen (82). Eine hohe Glucose-Utilisationsrate
der betreffenden Rezeptoren soll demnach Sittigung, eine niedrige dage-
gen Hunger bewirken (= glucostatische Regulation der Nahrungsauf-
nahme) (82). In Ubereinstimmung mit dieser Annahme wurde vielfach
gezeigt, dafB3 die parenterale Applikation von Glucoseantimetaboliten, die
den intrazelluldren Glucoseabbau hemmen, wie zum Beispiel 2-Desoxy-D-
Glucose, bei unterschiedlichen Spezies zu einer Verzehrssteigerung fiihrt
(z.B. 58, 121). Umgekehrt fiihrte die parenterale Applikation von Glucose
hiufig zu einer Verzehrsdepression (z. B. 82, 96, 111). Dieser Effekt scheint
allerdings von den Versuchsbedingungen abhéngig zu sein (1, 38, 116).
Schliefilich zeigte sich, daf3 der Blutglucosespiegel von Ratten unmittel-
bar vor spontanen (13, 78) oder auch langfristig zeitlich fixierten Mahlzei-
ten (89) absinkt. Bei Verhinderung dieses Blutglucoseabfalls durch ent-
sprechend dosierte Glucoseinfusionen wurde der Mahlzeitbeginn verzo-
gert (13). Diese Befunde sprechen dafiir, daf3 der Mahlzeitbeginn zumin-
dest partiell durch ein glucostatisches Signal ausgelost wird. Allerdings
geht man heute davon aus, dafi nicht nur die Verstoffwechselung der
Glucose, sondern auch die Oxidation anderer energieliefernder Substrate
zur Regulation der Nahrungsaufnahme beitragt (9, 67, 92). Eine hohe
Oxidationsrate scheint dabei insbesondere zur Aufrechterhaltung der Sit-
tigung nach einer Mahlzeit beizutragen (9, 71, 92). Ein Absinken der
Oxidationsrate fiihrt dementsprechend zu Hunger. Tatséchlich sind bei ad
libitum gefitterten Ratten Beginn und Ende spontaner Mahlzeiten mit
einem Abfall bzw. Anstieg der Stoffwechselrate korreliert (91).

Im Hinblick auf die relativ fettreiche Erndhrung des Mitteleuropaers
sind neuere an Ratten durchgefiihrte Experimente interessant, in denen
die intraperitoneale Injektion von Mercaptoacetat, das die Oxidation von
Fettsduren hemmt, zu einer Verzehrssteigerung fihrte, wenn die Ratten
mit einer relativ fettreichen Diidt gefiittert wurden (114). Der verzehrsstei-
gernde Effekt von Mercaptoacetat beruhte dabei auf einer Verkirzung der
Mahlzeitenintervalle bei unverianderter Mahlzeitengrofle (71). Dies unter-
stiitzt die Hypothese, dall eine Abnahme der Oxidation energieliefernder
Substrate zu Hunger fihrt (siehe oben).

Sensorische Funktion der Leber

Die Leber spielt bekanntlich eine Schlisselrolle im Stoffwechsel. Sie
kann praktisch alle Metaboliten oxidieren (119). Auf3erdem ist sie das erste
Organ, das die meisten der im Darm absorbierten Nahrstoffe passieren.
SchlieBlich speichert sie Glucose in Form von Glycogen und fungiert
damit auch als Kurzzeit-Energiespeicher., Mehrere Befunde sprechen
daftir, daBl die Leber bei der Regulation der Nahrungsaufnahme eine
wichtige Rolle spielt (67, 69, 72, 95, 111). Bei der Ratte steigen im Verlauf
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einer kohlenhydratreichen Mahlzeit am Beginn der Dunkelphase die por-
talen Plasmakonzentrationen von Lactat und Glucose rasch an. Parallel
dazu nimmt der Leberglycogengehalt ab, und der Lactatgehalt in der
Leber nimmt zu (68, 69, Langhans et al., unverédffentlichte Ergebnisse).
Ferner ist bei der Ratte der BlutfluB im Diinndarmbereich nach einer
Mahlzeit um 40-80 % erhdht (54). Die aus den genannten Verinderungen
resultierende vermehrte Bereitstellung energieliefernder Substrate in der
Leber wahrend und nach einer Mahlzeit konnte zur Sattigung beitragen.
So wurde mehrfach gezeigt, daB Glucose bei Infusion in die Pfortader
einen stirker ausgeprigten Sattigungseffekt besitzt als bei Infusion in die
Vena jugularis (96, 111, 127). Die diesbeziiglich ebenfalls beobachteten
negativen Ergebnisse scheinen neueren Befunden zufolge durch den Ver-
suchsansatz in den betreffenden Untersuchungen bedingt zu sein (127).
Auch Lactat reduzierte nach parenteraler Applikation den Verzehr (63, 66).
Mehrere Befunde sprechen dafiir, da3 der Einflull von peripher applizier-
ten Metaboliten und Antimetaboliten auf den Verzehr zum Teil durch
hepatische Chemorezeptoren vermittelt wird, die mit dem Gehirn tber
vagale Afferenzen verbunden sind. So fiihrte Glucose sowohl an der
perfundierten Leber als auch bei Infusion in die Pfortader zu einer
Abnahme der Aktionspotentialfrequenz in afferenten Fasern des hepati-
schen Vagusastes (93, 94). 2-Desoxy-D-Glucose hatte diesbeziiglich einen
umgekehrten Effekt (94). Ferner ist neueren Befunden zufolge der ver-
zehrssteigernde Eifekt von intraperitoneal injizierter 2-Desoxy-D-Glucose
nach selektiver Durchtrennung des hepatischen Vagusastes unter
bestimmten Bedingungen vermindert (18). Auch der verzehrsreduzie-
rende Effekt von Lactat und anderen Metaboliten (Pyruvat, Malat, D-3-
Hydroxybutyrat, Glycerin) trat nach hepatischer Vagotomie nicht auf (66).
Schlieflich war der verzehrssteigernde Effekt von Mercaptoacetat, das,
wie bereits erwihnt, die Oxidation von Fettsiuren hemmt, nach hepati-
scher Vagotomie deutlich abgeschwicht (703.

Méglicherweise beeinflufit die intrazellulire Oxidation energieliefern-
der Substrate tiber eine vermehrte Bereitstellung von ATP fiir die in der
Zellmembran lokalisierte Na*/K"-ATPase das Membranpotential der Zel-
len und bewirkt damit Verdnderungen der Aktionspotentialfrequenz in
afferenten Vagusfasern (Abb. 3).

Fur diese Hypothese spricht unter anderem, daf die intraperitoneale
Applikation des die Na"/K*-ATPase hemmenden Herzglycosids Ouabain
(G-Strophanthin) zu einer Verzehrssteigerung fithrte (72) und daf auch
dieser Effekt nach hepatischer Vagotomie nicht auftrat (72). Ouabain
bewirkt Uber die Hemmung der Na/K-ATPase eine Abnahme des Mem-
branpotentials von Leberzellen (104). Ferner hyperpolarisieren unter-
schiedliche energieliefernde Substrate (z.B. Pyruvat, Lactat, Fructose,
Palmitat), welche die Nahrungsaufnahme offenbar iiber einen hepati-
schen Mechanismus beeinflussen (siehe oben), die Leberzellmembran
Uber einen ouabain-sensitiven Mechanismus (16) und setzen zum Teil
auch die Aktionspotentialfrequenz in afferenten Vagusfasern herab (94).
Ein kausaler Zusammenhang zwischen Veridnderungen des Membran-
potentials von Hepatozyten und Veridnderungen in der Aktionspotential-
frequenz in afferenten Nervenfasern wurde bisher zwar noch nicht
gezeigt, er erscheint jedoch méoglich, nachdem Nervenfasern offenbar



Langhans und Scharrer, Regulation der Nahrungsaufnahme 87

atferente Nervenfaser

Aktionspotentialfrequenz | |——— Sittigung

Oxidation | ————— Membranpotential |

|

Glucose Membranpotential |

Na’K -ATPase [
der Zellmembran

|

ATP 1
verschiedene 1
Metabolite —L‘-——’ Oxidation {
Leberzelle

Abb. 3. Hypothese zur sensorischen Funktion der Leber bei der Regulation der
Nahrungsaufnahme.

unmittelbaren Kontakt mit Leberzellen haben (112). Erwdhnt sei aller-
dings, da3 Ouabain zwar den oben erwidhnten Effekt von Glucose auf die
Aktionspotentialfrequenz in afferenten Vagusfasern blockierte (94), daB
Glucose neuesten Erkenntnissen zufolge die Leberzellmembran jedoch
nicht tiber den intrazellularen Glucoseabbau hyperpolarisiert (Meyer und
Scharrer, unverdffentlichte Ergebnisse). Es ist deshalb denkbar, daf
Hepatozyten, sofern sie als metabolische Rezeptoren fungieren, Glucose
und andere Metaboliten (z. B. Fettsauren) auf unterschiedliche Weise regi-
strieren. Als hepatische Glucoserezeptoren koénnten jedoch auch freie
Nervenendigungen afferenter Nervenfasern fungieren (Abb. 3) (18, 94),
zumal der Energiebedarf peripherer Nervenfasern vorwiegend durch die
Glucoseoxidation gedeckt wird, wohingegen Leberzellen praktisch alle
energieliefernden Substrate, insbesondere Fettsduren, oxidieren kdénnen
(119).

Beim Wiederkéduer scheint einigen Befunden zufolge Propionat tber
hepatische Chemorezeptoren die Futteraufnahme zu reduzieren (3, 27).
Wie Propionat die betretfenden Rezeptoren stimuliert, ist jedoch unbe-
kannt.
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Glucagon als Séttigungshormon

Die Hypothese von einem kausalen Zusammenhang zwischen Verande-
rungen des hepatozellularen Membranpotentials und Nahrungsaufnahme
koénnte auch den in vielen Experimenten (z. B. 36, 39, 81, 103) bei Mensch
und Tier nachgewiesenen Sittigungseffekt des pankreatischen Inselzell-
hormons Glucagon erkliren. Glucagon stimuliert in der Leber einerseits
die Gluconeogenese und die Glycogenolyse, andererseits stimuliert es
aber auch iber Calcium als ,second messenger” den oxidativen Stoff-
wechsel der Leber (30) und erhéht gleichzeitig das Membranpotential von
Leberzellen (104). Im Verlauf einer Mahlzeit steigt die Glucagonkonzentra-
tion vor allem in der Pfortader stark an (69). Das wahrend der Mahlzeit
vermehrt sezernierte Glucagon bleibt demnach vorwiegend in der Leber
und konnte dort auch Sattigung induzieren, nachdem der Sittigungsef-
fekt von exogenem Glucagon nach hepatischer Vagotomie zumindest in
einigen Untersuchungen nicht auftrat (40, 79). Der liberzeugendste Hin-
weis auf einen physiologischen Siattigungseffekt von Glucagon ist sicher
die vor einigen Jahren erstmals beschriebene Verzehrssteigerung nach
intraperitonealer Applikation spezifischer, gegen Glucagon gerichteter
Antikoérper (73). Inzwischen wurde dieser Effekt von anderen Arbeits-
gruppen bestitigt (37, 84), und kiirzlich wurde sogar gezeigt, daf3 die
intraportale Infusion von Glucagonantikorpern wihrend spontaner Mahl-
zeiten ebenfalls zu einer Zunahme der MahlzeitgroBe fithrt (37). Aufgrund
dieser und anderer Befunde ist Glucagon eines der Hormone, deren
physiologische Sattigungsfunktion momentan am besten belegt ist.

Fettdepots und Regulation der Nahrungsaufnahme

Das Koérpergewicht ist lingerfristig der wichtigste Indikator fur die
Energiebilanz. Bei erwachsenen Individuen wird es vor allem durch die
GréBe der Fettdepots determiniert (61). Entsprechend dem eingangs
erwdhnten Regelkreis zwischen Energiegleichgewicht und Nahrungsauf-
nahme ist anzunehmen, daB die Nahrungsaufnahme auch durch die
GroBle der Fettdepots beeinflulit wird (= lipostatische Regulation der
Nahrungsaufnahme) (61). Wird die Grofe der Fettdepots beim Versuchs-
tier experimentell veréndert, so resultieren daraus kompensatorische Ver-
anderungen in der Nahrungsaufnahme, die zur Normalisierung der Fett-
depots bzw. des Kérpergewichts beitragen (z. B. 15, 34, 51, 100). Mehreren
Befunden zufolge beeinflussen die Fettdepots die Nahrungsaufnahme auf
humoralem Weg (51, 101). Die Fettdepots scheinen dabei nicht die priab-
sorptiven Sattigungsmechanismen zu modulieren, nachdem die gastroin-
testinale Passage von Nihrstoffen durch die Grofle der Fettdepots offen-
bar nicht beeinflufit wird (35). Eher konnten Metaboliten wie freie Fettsau-
ren und Glycerin, deren Plasmakonzentrationen die Grof3e der Fettdepots
widerspiegeln, Signalfunktion haben (35, 61). Die vermehrte Verstoff-
wechselung dieser aus den Fettdepots freigesetzten Metaboliten kénnte
den Verzehr entweder direkt oder indirekt iiber die Modulation eines
glucostatischen Mechanismus (siehe oben) beeinflussen (115). Besonders
interessant erscheinen in diesem Zusammenhang die hiufig beobachteten
Interaktionen zwischen Glucose-Utilisation und Fettsdurenoxidation
(105). So hat parenteral applizierte Glucose offenbar dann einen besonders
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stark ausgeprigten Sittigungseffekt, wenn die Fettsdurenoxidationsrate
hoch ist (38, 115). Ferner wurde ein Synergismus beziiglich der verzehrs-
steigernden Effekte von Hemmstoffen der Glucose-Utilisation und der
Fettsdurenoxidation beobachtet (31, 126).

Einige Autoren schreiben schlieflich dem Insulin eine lipostatische
Sattigungsfunktion zu (133). Da die Insulinkonzentration in der Zerebro-
spinalfitissigkeit nach intravenoser Glucose-Infusion ansteigt (123),
gelangt Insulin offenbar vom Plasma in die Hirnventrikel. Tatsichlich ist
die Plasmakonzentration von Insulin bei Mensch und Tier mit der GroRe
der Fettdepots korreliert (89), und die intrazerebroventrikulire (11) oder
periphere (129, 130) Applikation von Insulin in niedriger Dosis fihrte zu
einer Verzehrsdepression. Da eine kompensatorische Hypophagie nach
experimentell induziertem Ubergewicht bei Ratten jedoch auch nach
Ausschaltung der B-Zellen des Pankreas mittels Streptozotocin auftrat
(129), erscheint eine spezielle lipostatische Sattigungsfunktion von Insulin
fraglich. Aufgrund der erwihnten Befunde ist allerdings nicht auszu-
schlieflen, dafl wihrend der Nahrungsaufnahme vermehrt sezerniertes
Insulin generell am Zustandekommen der Sattigung beteiligt ist. Interes-
sant ist in diesem Zusammenhang, daf3 Insulin auf dem Weg der Transzy-
tose schneller aus dem Plasma ins Gehirn zu gelangen scheint, als
urspriinglich vermutet (132).

ZNS und Regulation der Nahrungsaufnahme

Die Rolle des ZNS bei der Regulation der Nahrungsaufnahme, insbe-
sondere das Zusammenspiel unterschiedlicher, an der Regulation der
Nahrungsaufnahme beteiligter Neurotransmitter und -peptide, wurde
kiirzlich in dieser Zeitschrift ausfithrlich abgehandelt (74) und wird des-
halb im Rahmen dieser Arbeit nur kurz dargestellt. Vor mehr als 40 Jahren
wurde erstmals gezeigt, dal} gezielte Liasionen im ventromedialen Hypo-
thalamus bei Versuchstieren Hyperphagie und Fettsucht hervorrufen (55),
wihrend Lasionen im ventrolateralen Hypothalamus eine voriberge-
hende Aphagie und einen Gewichtsverlust zur Folge hatten (2). Aufgrund
dieser und anderer Befunde wurde dem hypothalamischen Nucleus ven-
tromedialis lange Zeit die Funktion eines Sidttigungszentrums, dem
Nucleus ventrolateralis dagegen die Funktion eines Hungerzentrums
zugeschrieben (125). Obwohl niemand die ibergeordnete integrative
Funktion des Hypothalamus fir Hunger und Sattigung in Frage stellt, gilt
diese einfache Vorstellung inzwischen als widerlegt. Nach heutiger Auf-
fassung sind neben dem ventromedialen und lateralen Hypothalamus
insbesondere auch der hypothalamische Nucleus paraventricularis sowie
weiter kaudal gelegene Hirnareale fir die Regulation der Nahrungsauf-
nahme von Bedeutung (47, 76).

Beispielsweise scheinen zentralnervose Glucoserezeptoren, die fir die
Regulation der Nahrungsaufnahme von Bedeutung sind, vor allem im
kaudalen Hirnstamm und in der Medulla oblongata zu liegen. Dafir
spricht unter anderem, daf} die Injektion eines Glucoseantimetaboliten in
den lateralen Hirnventrikel die Futteraufnahme nicht stimulierte, wenn
der Ubertritt der injizierten Lésung vom 3. in den 4. Ventrikel durch eine
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Obstruktion des Aquaeductus encephali verhindert wurde (108). Nach
Injektion der betreffenden Substanz in den 4. Hirnventrikel war hingegen
der Verzehr unter den gleichen Bedingungen stimuliert (108). Mehrere
Befunde sprechen dafiir, daf3 die betretfenden Glucoserezeptoren im
Nucleus tractus solitarii und der Area postrema mit den Chemorezeptoren
der Leber und mit weiteren Glucoserezeptoren im lateralen Hypothala-
mus morphologisch und funktionell eng verkniipft sind (48, 98, 126). So
fiihrte etwa die orale Applikation eines Hemmstoffs der Fettsiurenoxida-
tion zu einer Verstidrkung des verzehrssteigernden Effekts eines intrazere-
broventrikulér injizierten Glucoseantimetaboliten (126). Interessanter-
weise blockierte Capsaicin, welches, wie bereits erwihnt, sensible affe-
rente Nervenfasern zerstort, zwar den verzehrssteigernden Effekt von
Mercaptoacetat nach intraperitonealer Injektion, nicht aber denjenigen
von 2-Desoxy-D-Glucose nach intrazerebroventrikuliarer Injektion (109).
Mercaptoacetat wiederum stimulierte den Verzehr nach intrazerebroven-
trikularer Injektion nicht (109). Demnach scheinen Glucose-Utilisation
und Fettsdurenoxidation zum Teil durch unterschiedliche Neurone im
kaudalen Hirnstamm bzw. in der Peripherie registriert zu werden, ihr
Einflufl auf die Nahrungsaufhahme resultiert jedoch offenbar aus der
Integration der betreffenden Informationen in den an der Regulation der
Nahrungsaufnahme beteiligten zentralnervésen Schaltkreisen. Generell
erfolgt die Informationsiibertragung von gastrointestinalen Mechano- und
Chemorezeptoren zu einem groBen Teil iiber afferente Fasern des Vagus
und damit tber den Nucleus tractus solitarii der Medulla oblongata sowie
den Nucleus parabrachialis in der Pons (47, 52, 53). Auch Geschmacksaffe-
renzen werden im Nucleus tractus solitarii und im Nucleus parabrachialis
umgeschaltet (29, 47). Die im kaudalen Hirnstamm beginnende Konver-
genz von viszeralen Afferenzen und Geschmacksafferenzen bildet nach
heutiger Auffassung auch die morphologische Grundlage fiir die unter
verschiedenen Bedingungen feststellbare und eingangs erwéihnte Modula-
tion der Schmackhaftigkeit (29, 47, 52, 53). Die Abnahme der Schmackhaf-
tigkeit im Verlauf einer Mahlzeit scheint dabei von gastrointestinalen und
postabsorptiven Faktoren gesteuert zu werden. So reduzierten beispiels-
weise intragastrale oder intraduodenale Glucose-Infusionen bei der Ratte
die Priferenz fir siiBe Stimuli (28). Ferner scheinen die Schmackhaftig-
keit von Glucose beim Menschen (12) sowie die Intensitit der SiiBempfin-
dung bei der Ratte (43) mit dem Blutglucosespiegel negativ korreliert zu
sein,

An der Integration der Informationen aus der Peripherie und an deren
Umsetzung in die entsprechenden Verhaltensweisen sind eine ganze
Reihe von Neurotransmittern und Neuropeptiden beteiligt. Auf die einzel-
nen Substanzen und ihr Zusammenwirken soll hier nicht niher eingegan-
gen werden. Erwihnt sei jedoch, daB das oben erwihnte Absinken des
Blutglucosespiegels vor dem Beginn einer Mahlzeit mit einem erhthten
Noradrenalinumsatz im hypothalamischen Nucleus paraventricularis ein-
hergeht (75). Dies ist interessant, weil Noradrenalin im Nucleus paraven-
tricularis Gber ug-adrenerge Rezeptoren die Nahrungsaufnahme stimuliert
(75). Dieser Effekt von Noradrenalin kénnte durch eine Hemmung der
Freisetzung von Corticotropin-Releasing-Hormon vermittelt werden, dem
eine Schlusselrolle als zentrale Sattigungssubstanz zugeschrieben wird
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(88). Mehreren Befunden zufolge sind auch das Neuropeptid Y, Dopamin,
Serotonin, Gamma-Amino-Buttersiure und endogene Opiate sowie im
Gehirn vorkommende gastrointestinale Peptide an der zentralen Regula-
tion von Hunger und Sittigung beteiligt (siehe oben) (88). Manche der
genannten Substanzen haben je nach Applikationsort, applizierter Dosis
und Spezies einen stimulierenden oder hemmenden Effekt auf die Nah-
rungsaufnahme (88), was die Komplexitidt der betreffenden Zusammen-
hiinge unterstreicht.
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